Cu的最低检出限,如何检测茶叶中的重金属( 八 )


孙书菊等〔39〕用不锈钢缝管原子捕集法测定了血清中的Cu和Zn,灵敏度分别提高了3倍和2倍 。赵进沛等〔40〕测定镉,灵敏度比常规火焰法提高了116倍,特征浓度达到1.52×10-4μg/mL/1% 。刘永铭等〔41〕考察了缝式原子捕集管的性能,比较了14个元素的测定灵敏度,各元素灵敏度均有提高,铋和铁提高1.3倍,铅和镉提高4.4倍,精密度亦有改善 。
其他富集技术与原子捕集技术相结合,可以使测定灵敏度进一步提高 。刘志民等〔42〕将黄原酯棉富集与石英缝管技术结合起来,测定了环境水中的铅,灵敏度提高35倍,该法可用于野外作业 。刘立行等〔43-45〕联合使用离子交换和原子捕集技术测定水中的镉和镍,离子交换富集倍数为40,原子捕集灵敏度提高近81倍 。使用离子交换和喷涂铝盐的石英捕集管(管壁上形成Al2O3层)测定水中的铜,捕集效率提高192倍,总灵敏度提高7463倍 。徐子刚等〔46〕在pH=9和pH=1条件下用APDC-MIBK分别萃取Sb(Ⅲ)和总锑,加入氯化铜反萃取之后,缝管捕集测定Sb(Ⅲ)和Sb(Ⅴ),灵敏度比常规火焰法提高2.6倍,富集系数达到100 。检出限为2.0ng/mL 。熊远福等〔47,48〕用DDTC-CCl4和DDTC-CHCl3分别萃取Te(Ⅳ)和As(Ⅲ),结合缝管捕集技术成功地分析了Te(Ⅳ)和Te(Ⅵ)及As(Ⅲ)和As(Ⅴ) 。
燕庆元等〔49〕研究了Zeeman效应石英缝管捕集技术,采用外径4mm、内径2~2.5mm、缝宽和缝长各为0.8mm和 9mm的单缝微捕集管,测定了Ag、Au、Cd、Cu、Ga、Ni、Pb、Zn等,灵敏度比常规火焰原子吸收法高1.1(Ga)到3.5倍(Au),与非塞曼单缝微捕集法的文献值相比,Au、Cd、Zn的灵敏度均有提高,但其他几个元素的灵敏度低 。用正交设计优化水冷石英管捕集条件,测定矿石中的金,检出限达到0.0087μg/mL,测定Ga,灵敏度提高17.5倍 。
谢凤宏等〔50〕用电热T型开缝石英管捕集氢化物,火焰原子吸收法测定铜镍渣中的锗,检出限为2.4ng(S/N=2) 。
杨海燕等〔51〕用X-衍射分析详细研究了缝管原子捕集和释放机理,Ag和Bi以金属形式捕集,直接从熔融物蒸发原子化;镉、铜、铟、镍、锑、锌以CdO、Cu2O、In2O3、NiO、Sb6O11、ZnO形式捕集,钴和镓以Co2SiO4和GaSiO4形式捕集,铅以Pb12O19或Pb2SiO4形式捕集,捕集物在乙炔流量突然增大的瞬间在高温气体撞击下溅射原子化,或在高温升温的瞬间化学键断裂原子化 。使用5%乙醇或丙酮及Al2O3涂层管,能使大多数元素的灵敏度提高 。使用Al2O3涂层管检出限和精密度得到改善 。元素在捕集管延迟时间tA与捕集物溶点(锌除外)或元素熔点之间(铟除外)具有良好的线性关系 。作者认为,高效捕集和瞬间释放是缝管原子捕集法获得高灵敏度的关键 。解离能大于4.2eV的氧化物,难于在捕集温度下解离,因此不适合用缝管原子捕集法测定 。
5 增感效应和增感技术
在火焰原子吸收光谱分析中,应用表面活性剂增感受到普遍重视 。范健等〔52〕在十二烷基硫酸钠(SDS)存在下测定三氧化钼和金属铬中的锰,灵敏度提高50%,特征浓度分别达到0.031μg/mL/1%和0.032μg/mL/1% 。
张展霞等〔53〕详细探讨了表面活性剂对Cr(Ⅵ)的增感效应,认为表面张力降低导致气溶胶粒子细化虽然也是增感的一个原因,但不是主要原因,除此之外,荷正电的胶束与Cr2O2-7生成离子对化合物,引起气溶胶粒子的再分配(类似于金属离子的富集作用)和向外扩散速度减慢,火焰中心待测元素浓度增大,以及离子对化合物利于铬的原子化均产生增感效应 。因此,增感效应是多种因素综合作用的结果 。汪福意等〔54,55〕研究了表面活性剂对锰的增感效应,发现只有阴离子表面活性剂对Mn2+有增感效应,在阴离子表面活性剂的cmc之前,表面活性剂的单体分子与Mn2+电荷引力将Mn2+吸引富集到气溶胶的表面产生增感,在cmc之后,表面活性剂胶团与Mn2+形成胶团化合物,保护Mn2+,使之不能形成难解离或难熔化合物,在表面活性剂燃烧产生的强还原性气氛中直接还原,提高了原子化效率而增感 。阳离子和中性表面活性剂没有增感效应,增感效应与表面活性剂电荷类型有关 。表面活性剂的效应表现在三方面:再分配富集作用;提供强还原性气氛;改变试液的提升效率 。张悟铭等〔56〕认为,在雾化过程中,表面活性剂分子的疏水端积聚在空气-水界面,分析离子由于电荷作用,靠近表面活性剂分子的亲水端,当气溶胶细化时,表面活性剂在分析离子周围形成微环境,进入火焰时,产生还原性气氛,提高了原子化效率,产生增感效应 。