平均绝对离差


平均绝对离差

文章插图
平均绝对离差【平均绝对离差】 平均绝对离差(mean absolute deviation)简称“平均离差”,当总体的单位数为N时,有变数X1,X2,X3,……,XN一1,XN,各项变数与总体平均数之差叫离差,平均绝对离差定义为各数据与平均值的离差的绝对值的平均数 。
基本介绍中文名:平均绝对偏差
外文名:mean absolute deviation
别称:平均偏差,平均离差等
相关概念:组中值等
定义平均绝对离差(mean absolute deviation)是用样本数据相对于其平均值的绝对距离来度量数据的离散程度 。平均绝对离差也称为平均离差(mean deviation) 。平均绝对离差定义为各数据与平均值的离差的绝对值的平均数 。设样本的n个观测值为
平均绝对离差

文章插图
,平均绝对离差为:
平均绝对离差

文章插图
对于分组数据,平均绝对离差为:
平均绝对离差

文章插图
其中
平均绝对离差

文章插图
分别为第
平均绝对离差

文章插图
组数据的频数及组中值,
平均绝对离差

文章插图
为数据分组的组数 。例1设有数据:1920,1700,1250,1150,1090,1041,1020,980,950,900,870,计算可得中位数仍为1041,IQR=1250—950=300 。Q1、Q3、IQR的结果如图2—15所示 。从数据的散布情况看,该组数据集中于中位数的周围 。解:对于例1所示的数据,由式(1)计算,可得:
平均绝对离差

文章插图
。与此相近的还有一种叫“平均差”的尺度,其定义为各变数与样本的中位数差的绝对值的平均数 。例2某县黄牛的胸围记录是138.7,147.7,149.4,150.4,151.7cm,这时它们的中位数
平均绝对离差

文章插图
,平均差可用下式求出:
平均绝对离差

文章插图
平均绝对离差

文章插图
平均绝对离差

文章插图
平均差、方差和标準差运用了全部观测值,与极差和IQR相比,在方法上做了一定的改进 。但相对而言,平均绝对离差用得较少,在套用中用的较多的是方差和标準差,以便于估计总体的方差和标準差 。平均离差的性质平均离差作为散布特徵,其含义直观且便于理解,但是因含绝对值而不便于计算 。此外,平均离差用于统计推断时,其统计性质也远不如标準差优良,因此在统计推断中,平均离差比标準差用得较少,这里指出如下两条性质:(1)对于任意常数c,有
平均绝对离差

文章插图
其中
平均绝对离差

文章插图
是中位数 。(2)平均离差可以按如下公式计算:
平均绝对离差

文章插图