电力MOS场效应电晶体

电力MOS场效应电晶体特点——用栅极电压来控制漏极电流 输入阻抗高驱动电路简单,需要的驱动功率小 。开关速度快,工作频率高 。热稳定性优于GTR 。电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。电力MOSFET的种类 按导电沟道可分为P沟道和N沟道 。耗尽型——当栅极电压为零时漏源极之间就存在导电沟道 。增强型——对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道 。电力MOSFET主要是N沟道增强型 。电力MOSFET的结构 小功率MOS管是横嚮导电器件 。电力MOSFET大都採用垂直导电结构,又称为VMOSFET(Vertical MOSFET) 。按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(Vertical Double-diffused MOSFET) 。这里主要以VDMOS器件为例进行讨论 。电力MOSFET的工作原理(N沟道增强型VDMOS) 截止:漏源极间加正电源,栅源极间电压为零 。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过 。导电:在栅源极间加正电压UGS 当UGS大于UT时,P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。电力MOSFET的基本特性 (1)静态特性 漏极电流ID和栅源间电压UGS的关係称为MOSFET的转移特性 。ID较大时,ID与UGS的关係近似线性,曲线的斜率定义为跨导Gfs 。(2)MOSFET的漏极伏安特性(即输出特性): 截止区(对应于GTR的截止区) 饱和区(对应于GTR的放大区) 非饱和区(对应GTR的饱和区) 工作在开关状态,即在截止区和非饱和区之间来迴转换 。漏源极之间有寄生二极体,漏源极间加反向电压时导通 。通态电阻具有正温度係数,对器件并联时的均流有利 。(3)动态特性 开通过程 开通延迟时间td(on) 上升时间tr 开通时间ton——开通延迟时间与上升时间之和 关断过程 关断延迟时间td(off) 下降时间tf 关断时间toff——关断延迟时间和下降时间之和 MOSFET的开关速度 MOSFET的开关速度和Cin充放电有很大关係 。可降低驱动电路内阻Rs减小时间常数,加快开关速度 。不存在少子储存效应,关断过程非常迅速 。开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的 。场控器件,静态时几乎不需输入电流 。但在开关过程中需对输入电容充放电,仍需一定的驱动功率 。开关频率越高,所需要的驱动功率越大 。电力MOSFET的主要参数 除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有: (1)漏极电压UDS——电力MOSFET电压定额 (2)漏极直流电流ID和漏极脉冲电流幅值IDM——电力MOSFET电流定额 (3)栅源电压UGS—— UGS>20V将导致绝缘层击穿。(4)极间电容——极间电容CGS、CGD和CDS 另一种介绍说明: 场效应管(Fjeld Effect Transistor简称FET )是利用电场效应来控制半导体中电流的一种半导体器件,故因此而得名 。场效应管是一种电压控制器件,只依靠一种载流子参与导电,故又称为单极型电晶体 。与双极型晶体三极体相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、製造工艺简单和便于集成化等优点 。场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,套用广泛 。图Z0121 为场效应管的类型及图形、符号 。一、结构与分类 图 Z0122为N沟道结型场效应管结构示意图和它的图形、符号 。它是在同一块N型硅片的两侧分别製作掺杂浓度较高的P型区(用P 表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d) 。在形成PN结过程中,由于P 区是重掺杂区,所以N一区侧的空间电荷层宽度远大 二、工作原理 N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已 。下面以N沟道结型场效应管为例来分析其工作原理 。电路如图Z0123所示 。由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零 。漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流ID 。1.栅源电压UGS对导电沟道的影响(设UDS=0) 在图Z0123所示电路中,UGS <0,两个PN结处于反向偏置,耗尽层有一定宽度,ID=0 。若|UGS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|UGS| 减小,耗尽层变窄,沟道变宽,电阻减小 。这表明UGS控制着漏源之间的导电沟道 。当UGS负值增加到某一数值VP时,两边耗尽层合拢,整个沟道被耗尽层完全夹断 。(VP称为夹断电压)此时,漏源之间的电阻趋于无穷大 。管子处于截止状态,ID=0 。2.漏源电压UGS对漏极电流ID的影响(设UGS=0) 当UGS=0时,显然ID=0;当UDS>0且尚小对,P N结因加反向电压,使耗尽层具有一定宽度,但宽度上下不均匀,这是由于漏源之间的导电沟道具有一定电阻,因而漏源电压UDS沿沟道递降,造成漏端电位高于源端电位,使近漏端PN结上的反向偏压大于近源端,因而近漏端耗尽层宽度大于近源端 。显然,在UDS较小时,沟道呈现一定电阻,ID随UDS成线性规律变化(如图Z0124曲线OA段);若UGS再继续增大,耗尽层也随之增宽,导电沟道相应变窄,尤其是近漏端更加明显 。由于沟道电阻的增大,ID增长变慢了(如图曲线AB段),当UDS增大到等于|VP|时,沟道在近漏端首先发生耗尽层相碰的现象 。这种状态称为预夹断 。这时管子并不截止,因为漏源两极间的场强已足够大,完全可以把向漏极漂移的全部电子吸引过去形成漏极饱和电流IDSS (这种情况如曲线B点):当UDS>|VP|再增加时,耗尽层从近漏端开始沿沟道加长它的接触部分,形成夹断区。由于耗尽层的电阻比沟道电阻大得多,所以比|VP|大的那部分电压基本上降在夹断区上,使夹断区形成很强的电场,它完全可以把沟道中向漏极漂移的电子拉向漏极,形成漏极电流 。因为未被夹断的沟道上的电压基本保持不变,于是向漏极方向漂移的电子也基本保持不变,管子呈恆流特性(如曲线BC段) 。但是,如果再增加UDS达到BUDS时(BUDS称为击穿电压)进入夹断区的电子将被强电场加速而获得很大的动能,这些电子和夹断区内的原子碰撞发生链锁反应,产生大量的新生载流予,使ID急剧增加而出现击穿现象(如曲线CD段) 。由此可见,结型场效应管的漏极电流ID受UGS和UDS的双重控制 。这种电压的控制作用,是场效应管具有放大作用的基础 。三、特性曲线 1.输出特性曲线 输出特性曲线是栅源电压UGS取不同定值时,漏极电流ID 随漏源电压UDS 变化的一簇关係曲线,如图Z0124所示 。由图可知,各条曲线有共同的变化规律 。UGS越负,曲线越向下移动)这是因为对于相同的UDS,UGS越负,耗尽层越宽,导电沟道越窄,ID越小 。由图还可看出,输出特性可分为三个区域即可变电阻区、恆流区和击穿区 。◆可变电阻区:预夹断以前的区域 。其特点是,当0<UDS<|VP|时,ID几乎与UDS呈线性关係增长,UGS愈负,曲线上升斜率愈小 。在此区域内,场效应管等效为一个受UGS控制的可变电阻 。◆恆流区:图中两条虚线之间的部分 。其特点是,当UDS>|VP|时,ID几乎不随UDS变化,保持某一恆定值 。ID的大小只受UGS的控制,两者变数之间近乎成线性关係,所以该区域又称线性放大区 。◆击穿区:右侧虚线以右之区域 。此区域内UDS>BUDS,管子被击穿,ID随UDS的增加而急剧增加 。2.转移特性曲线 当UDS一定时,ID与UGS之间的关係曲线称为转移特性曲线 。实验表明,当UDS>|VP|后,即恆流区内,ID 受UDS影响甚小,所以转移特性通常只画一条 。在工程计算中,与恆流区相对应的转移特性可以近似地用下式表示:Id=Idss(1-Ugs/Vp)(1-Ugs/Vp) 式GS0127中VP≤UGS≤0,IDSS是UGS=0时的漏极饱和电流 。