推荐书籍:《网站分析实战——如何以数据驱动决策 , 提升网站价值》
相关随笔:
一、网站点击流数据分析项目业务背景
1.什么是点击流数据
1.web访问日志
即指用户访问网站时的所有访问、浏览、点击行为数据 。比如点击了哪一个链接 , 在哪个网页停留时间最多 , 采用了哪个搜索项、总体浏览时间等 。
而所有这些信息都可被保存在网站日志中 。通过分析这些数据 , 可以获知许多对网站运营至关重要的信息 。采集的数据越全面 , 分析就能越精准 。?日志的生成渠道:1)是网站的web服务器所记录的web访问日志;2)是通过在页面嵌入自定义的js代码来获取用户的所有访问行为(比如鼠标悬停的位置 , 点击的页面组件等) ,
然后通过ajax请求到后台记录日志;这种方式所能采集的信息最全面;3)通过在页面上埋点1像素的图片 , 将相关页面访问信息请求到后台记录日志;?日志数据内容详述:在实际操作中 , 有以下几个方面的数据可以被采集:1)访客的系统属性特征 。比如所采用的操作系统、浏览器、域名和访问速度等 。2)访问特征 。包括停留时间、点击的URL等 。3)来源特征 。包括网络内容信息类型、内容分类和来访URL等 。产品特征 。包括所访问的产品编号、产品类别、产品颜色、产品价格、产品利润、
日志示例:
GET /log.gif?t=item.010001&m=UA-J2011-1&pin=-&uid=1679790178&sid=1679790178|12&v=je=1$sc=24-bit$sr=1600x900$ul=zh-cn$cs=GBK$dt=【云南白药套装】云南白药 牙膏 180g×3 (留兰香型)【行情 报价 价格 评测】-京东$hn=item.jd.com$fl=16.0 r0$os=win$br=chrome$bv=39.0.2171.95$wb=1437269412$xb=1449548587$yb=1456186252$zb=12$cb=4$usc=direct$ucp=-$umd=none$uct=-$ct=1456186505411$lt=0$tad=-$sku=1326523$cid1=1316$cid2=1384$cid3=1405$brand=20583$pinid=-&ref=&rm=1456186505411 HTTP/1.1
2.点击流数据模型
点击流概念
点击流这个概念更注重用户浏览网站的整个流程 , 网站日志中记录的用户点击就像是图上的“点” , 而点击流更像是将这些“点”串起来形成的“线” 。也可以把“点”认为是网站的Page , 而“线”则是访问网站的 。所以点击流数据是由网站日志中整理得到的 , 它可以比网站日志包含更多的信息 , 从而使基于点击流数据统计得到的结果更加丰富和高效 。
点击流模型生成
点击流数据在具体操作上是由散点状的点击日志数据梳理所得 , 从而 , 点击数据在数据建模时应该存在两张模型表(和):
文章插图
文章插图
2.点击流数据分析意义
参见文首链接
3.流量分析常见指标
1)基础分析(PV,IP,UV) 2)来源分析 3)受访分析 4)访客分析 5)转化路径分析
//完整指标参考文首链接
二、整体技术流程及架构
1.处理流程
该项目是一个纯粹的数据分析项目 , 其整体流程基本上就是依据数据的处理流程进行 , 依此有以下几个大的步骤:
1)数据采集
文章插图
首先 , 通过页面嵌入JS代码的方式获取用户访问行为 , 并发送到web服务的后台记录日志
然后 , 将各服务器上生成的点击流日志通过实时或批量的方式汇聚到HDFS文件系统中
当然 , 一个综合分析系统 , 数据源可能不仅包含点击流数据 , 还有数据库中的业务数据(如用户信息、商品信息、订单信息等)及对分析有益的外部数据 。
2)数据预处理
通过程序对采集到的点击流数据进行预处理 , 比如清洗 , 格式整理 , 滤除脏数据等
3)数据入库
将预处理之后的数据导入到HIVE仓库中相应的库和表中
4)数据分析
项目的核心内容 , 即根据需求开发ETL分析语句 , 得出各种统计结果
5)数据展现
将分析所得数据进行可视化
2.项目结构
文章插图
三、模块开发——数据采集
数据采集的需求广义上来说分为两大部分 。
1)是在页面采集用户的访问行为 , 具体开发工作:
1、开发页面埋点js , 采集用户访问行为
2、后台接受页面js请求记录日志
此部分工作也可以归属为“数据源” , 其开发工作通常由web开发团队负责
2)是从web服务器上汇聚日志到HDFS , 是数据分析系统的数据采集 , 此部分工作由数据分析平台建设团队负责 , 具体的技术实现有很多方式:
2Shell脚本
优点:轻量级 , 开发简单
缺点:对日志采集过程中的容错处理不便控制
2Java采集程序
文章插图
优点:可对采集过程实现精细控制
缺点:开发工作量大
2Flume日志采集框架
成熟的开源日志采集系统 , 且本身就是生态体系中的一员 , 与体系中的各种框架组件具有天生的亲和力 , 可扩展性强
数据采集技术选型
flume
采集规则:
agent1.sources = source1agent1.sinks = sink1agent1.channels = channel1# Describe/configure spooldir source1#agent1.sources.source1.type = spooldir#agent1.sources.source1.spoolDir = /var/logs/nginx/#agent1.sources.source1.fileHeader = false# Describe/configure tail -F source1#使用exec作为数据源source组件agent1.sources.source1.type = exec #使用tail -F命令实时收集新产生的日志数据agent1.sources.source1.command = tail -F /var/logs/nginx/access_logagent1.sources.source1.channels = channel1#configure host for source#配置一个拦截器插件agent1.sources.source1.interceptors = i1agent1.sources.source1.interceptors.i1.type = host#使用拦截器插件获取agent所在服务器的主机名agent1.sources.source1.interceptors.i1.hostHeader = hostname#配置sink组件为hdfsagent1.sinks.sink1.type = hdfs#a1.sinks.k1.channel = c1#agent1.sinks.sink1.hdfs.path=hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H%M%S#指定文件sink到hdfs上的路径agent1.sinks.sink1.hdfs.path=hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M_%hostname#指定文件名前缀agent1.sinks.sink1.hdfs.filePrefix = access_logagent1.sinks.sink1.hdfs.maxOpenFiles = 5000 #指定每批下沉数据的记录条数agent1.sinks.sink1.hdfs.batchSize= 100agent1.sinks.sink1.hdfs.fileType = DataStreamagent1.sinks.sink1.hdfs.writeFormat =Text#指定下沉文件按1G大小滚动agent1.sinks.sink1.hdfs.rollSize = 1024*1024*1024#指定下沉文件按1000000条数滚动agent1.sinks.sink1.hdfs.rollCount = 1000000#指定下沉文件按30分钟滚动agent1.sinks.sink1.hdfs.rollInterval = 30#agent1.sinks.sink1.hdfs.round = true#agent1.sinks.sink1.hdfs.roundValue = http://www.kingceram.com/post/10#agent1.sinks.sink1.hdfs.roundUnit = minuteagent1.sinks.sink1.hdfs.useLocalTimeStamp = true# Use a channel which buffers events in memory#使用memory类型channelagent1.channels.channel1.type = memoryagent1.channels.channel1.keep-alive = 120agent1.channels.channel1.capacity = 500000agent1.channels.channel1.transactionCapacity = 600# Bind the source and sink to the channelagent1.sources.source1.channels = channel1agent1.sinks.sink1.channel = channel1
//实际进行适当调整
调整启动命令 , 启动即可:
在部署了flume的nginx服务器上 , 启动flume的agent , 命令如下:bin/flume-ng agent --conf ./conf -f ./conf/weblog.properties.2 -n agent
//正确匹配配置文件名称与agent名称等.
四、模块开发之数据预处理
过滤“不合规”数据
格式转换和规整
根据后续的统计需求 , 过滤分离出各种不同主题(不同栏目path)的基础数据
核心代码:
package cn.itcast.bigdata.hive.mr.pre;import java.io.IOException;import java.util.HashSet;import java.util.Set;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import cn.itcast.bigdata.hive.mrbean.WebLogBean;import cn.itcast.bigdata.hive.mrbean.WebLogParser;/*** 处理原始日志 , 过滤出真实pv请求* 转换时间格式* 对缺失字段填充默认值* 对记录标记valid和invalid* * @author**/public class WeblogPreProcess {static class WeblogPreProcessMapper extends Mapper
运行mr进行过滤处理:
hadoop jar weblog.jarcn.itcast.bigdata.hive.mr.WeblogPreProcess /weblog/input /weblog/preout
【大数据入门第十三天——离线综合案例:网站点击流数据分析】###剩余模块 , 待补充 , 暂时参考文首博文
- linux中一些常见的入门级命令
- 微软推HTML5割绳子游戏,大屏幕上割绳子,感觉就是爽!
- 阿里数学竞赛最年轻金奖得主:17岁北大读大二,小学就在看数学分析
- 【量化】实战恒有数获取指数定投的数据源
- 关于n维欧式空间的介绍 n维欧式空间
- Python数据分析师培训学习之路 - 零基础完整指南
- 网站日志流量系统----【数据采集模块、数据预处理模块】
- 那些证书是国家承认的吗?
- 10 5英寸 10 5英寸是多大
- 班昭续汉书 班昭续汉书中写马融的目的