本文对in——中的数学模型进行过程推导与分析
J E , Lu N , Bajic D , et al.in[J]. , 2018, 361(6401):469-474.
文章说明和系列内容
本系列更新主要是关于2018年一篇群落结构组成的文献进行阅读的分析和总结,将全文的过程进行分解 。主要分为下面几个篇章 。本系列的全部内容都为原创,由于个人水平有限,整理过程可能对一些理解不到位甚至错误,请辩证的阅读 。
本文字数共(3112)大于阅读5分钟本文主要涉及的模型
1. 资源消费(Microbial Consumer Resource Model)生长模型2. 交叉互养模型( cross-feeding.)3. 莫诺特方程(Monod mold)4. Logistic方程
前言
微生物生长过程中主要对资源利用的过程,本文基于传统的资源消耗模型基础上加入微生物代谢过程中产生副产物也作为供群落中的微生物生长的资源 。
1.交叉互养模型的假设前提有:
1. 副产物供给的能量只能被不断减少 。2. 产生的副产物的量与当前的群数目相关 。3.假设每个菌维持的最少消耗的能量设定一致 。
莫诺特方程(Monod mold):
1. 在简单培养基中只有单一限制底物时,认为生物的生长速率只与当前细胞浓度有有关 。2. 本方程为经验方程,没有考虑具体的生化过程 。
资源生长模型与交叉互养模型的推导 消耗资源的基础动力学方程
环 境 中 单 位 资 源 消 耗 速 率 = 单 位 时 间 加 入 资 源 ? 不 同 菌 单 位 时 间 消 耗 资 源 环境中单位资源消耗速率=单位时间加入资源-不同菌单位时间消耗资源 环境中单位资源消耗速率=单位时间加入资源?不同菌单位时间消耗资源
? R β ? t = k β ? R β τ β ? ∑ C i β R β N i ( 1 ) \frac{\ R_{\beta}}{\ t}=\frac{k_{\beta }-R_{\beta}}{\tau_{\beta }}-\sum C_{i\beta }R_{\beta}{N_{i}} \qquad (1) ?t?Rβ??=τβ?kβ??Rβ???∑Ciβ?Rβ?Ni?(1)
τ β 培 养 基 传 代 时 间 / 培 养 转 移 到 新 培 养 基 的 时 间 \tau_{\beta }培养基传代时间/培养转移到新培养基的时间 τβ?培养基传代时间/培养转移到新培养基的时间
单 位 时 间 生 长 速 率 = 环 境 中 的 总 能 量 ? 能 生 长 的 最 少 能 量 单位时间生长速率=环境中的总能量-能生长的最少能量 单位时间生长速率=环境中的总能量?能生长的最少能量
1 N i ? N i ? t = ∑ w i α C i α R α ? m i ( 2 ) \frac{1}{N_{i}}\frac{\ N_{i}}{\ t}=\sum w_{i \alpha } C_{i\alpha }R_{\alpha}-m_{i} \qquad (2) Ni?1??t?Ni??=∑wiα?Ciα?Rα??mi?(2)
交叉互养的引入
培 养 体 系 中 的 能 量 变 化 = 微 生 物 代 谢 消 耗 的 ? 微 生 物 副 产 物 生 成 的 培养体系中的能量变化=微生物代谢消耗的-微生物副产物生成的 培养体系中的能量变化=微生物代谢消耗的?微生物副产物生成的
能 量 变 化 的 量 恒 大 于 0,总 能 量 是 不 断 减 少 的 能量变化的量恒大于0,总能量是不断减少的 能量变化的量恒大于0,总能量是不断减少的
Δ w i α = w i ? ∑ β D β α i w b e t a ( 3 ) \Delta w_{i \alpha}=w_{i}-\sum_{\beta}D_{\beta\alpha}^{i}w_{beta} \qquad (3) Δwiα?=wi??β∑?Dβαi?wbeta?(3)
微生物生长过程
模型
1 N i ? N i ? t = r i ( s ) ( 1 ? N i K i ( s ) ) ( 4 ) \frac{1}{N_{i}}\frac{\ N_{i}}{\ t}=r_{i}(s)({1-\tfrac{N_{i}}{K_{i}(s)}}) \qquad (4) Ni?1??t?Ni??=ri?(s)(1?Ki?(s)Ni??)(4)
r i ( s ) r_{i}(s) ri?(s) 不同资源下的最大生长速率K i ( s ) K_{i}(s) Ki?(s) 在特定资源下的特征生长速率 。
纯培养基中的单一限制性微生物生长模型
莫诺特方程(Monod mold)
生 长 速 率 = f ( 资 源 数 目 ) 生长速率=f(资源数目) 生长速率=f(资源数目)
r i ( s ∣ μ i k i ) = μ i s k i + s ( 5 ) r_{i}(s|\mu _{i} k_{i})=\frac{\mu _{i}s}{k_{i}+s} \qquad (5) ri?(s∣μi?ki?)=ki?+sμi?s?(5)
μ i \mu _{i} μi?、 k i k_{i} ki?为待拟合量,可以通过测量不同浓度下资源与生长速率进行求解
联立公式(4)、(5)得到公式(6)
1 N i ? N i ? t = μ i s k i + s ? N i K i ( s ) μ i s k i + s ( 6 ) \frac{1}{N_{i}}\frac{\ N_{i}}{\ t}=\frac{\mu _{i}s}{k_{i}+s}-\frac{N_{i}}{K_{i}(s)}\frac{\mu _{i}s}{k_{i}+s}\qquad (6) Ni?1??t?Ni??=ki?+sμi?s??Ki?(s)Ni??ki?+sμi?s?(6)
将公式(6)与公式(2)得到公式(7)
1 N i ? N i ? t = μ i s k i + s ? m i ( 7 ) \frac{1}{N_{i}}\frac{\ N_{i}}{\ t}=\frac{\mu _{i}s}{k_{i}+s}-m_{i}\qquad (7) Ni?1??t?Ni??=ki?+sμi?s??mi?(7)
m i m _{i} mi?为实验测量量 微生物生长需要的最低生长能量
将公式(1)与公式(2)和公式(7)联立得到公式(8)
? s ? t = α s ? s τ ? ∑ i N i μ i s Y i ( k i + s ) ( 8 ) \frac{\ s}{\ t}=\frac{\alpha _{s}-s}{\tau }-\sum _{i}\frac{N_{i}\mu_{i} s}{Y_{i}(k_{i}+s)}\qquad (8) ?t?s?=ταs??s??i∑?Yi?(ki?+s)Ni?μi?s?(8)
Y i 为 单 位 葡 萄 糖 产 生 的 菌 体 量 ( O D 值 计 算 ) Y_{i}为单位葡萄糖产生的菌体量(OD值计算) Yi?为单位葡萄糖产生的菌体量(OD值计算)可以通过实验进行估计
文献中关于模型中最小能量需求的实验数值推导过程和单位葡萄糖对菌体的生长量
将微分方程(8)和(7)进行建立方程组求解
{ 1 N i ? N i ? t = μ i s k i + s ? m i ( 7 ) ? s ? t = α s ? s τ ? ∑ i N i μ i s Y i ( k i + s ) ( 8 ) \left\{\begin{} \frac{1}{N_{i}}\frac{\ N_{i}}{\ t}=\frac{\mu _{i}s}{k_{i}+s}-m_{i}\qquad (7) & & \\ \frac{\ s}{\ t}=\frac{\alpha _{s}-s}{\tau }-\sum _{i}\frac{N_{i}\mu_{i} s}{Y_{i}(k_{i}+s)}\qquad (8) & & \end{}\right. {Ni?1??t?Ni??=ki?+sμi?s??mi?(7)?t?s?=ταs??s??∑i?Yi?(ki?+s)Ni?μi?s?(8)???
解得:
菌体中的生长情况随时间的变化 。如下图
【文献—Emergent simplicity in microbial comm】 程序展示文献中的结果图展示
- 深度学习在花椒直播中的应用——排序算法篇
- 深度学习在花椒直播中的应用—推荐系统冷启动算法
- [论文阅读]PKD——基于Pearson相关系数的目标检测器通用蒸馏框架
- 学生信息管理系统——错误类型汇总
- 深大算法设计与分析实验三——回溯法解决地图填色问题
- 四 python数据分析新手入门课程学习——探索性数据分析(多因子)(来源:慕
- 备战考研和软考
- 二 Sun的逆向之路——FiF口语训练的刷分剖析
- 1 小书虫app日记——
- 【算法设计与分析】3.回溯法—地图填色问题