一 区块链不可能三角--扩容、扩展、无限扩展( 四 )


大区块-->分叉多-->采用GHOST-->可扩展POW
隔离见证-->解决比特币可变性问题-->方便链下方案的实现-->无限扩展
所以,从这种角度讲,说两个方案扩展了比特币也无可厚非——只不过最终,真正在比特币上的升级,也就只停留在了这第一步上 。
6 不同定义之间的关系
首先,第3.5类只有两种方案,大区块和隔离见证首先可以排除出去,因为这两种方案现在基本上只会以“扩容”的名称出现,只有非常不专业的地方会用“可扩展”的名义去拿它和其他可扩展算法比较 。
其次,在目前,能标榜自己是“无限扩展”的,基本上也不会介绍自己是“可扩展”的 。如果这里仍有疑问的话,也只要记住,分片和链下技术是不应该和其他“可扩展”方案放在一起比较的,因为这两个方案的可扩展性更高,即在大网络中的输出更高,但是会在安全性或者中心化上做出一些妥协 。更基础一些的不同是——看这些算法为了保证一致性,是不是要求每个节点都记录每一笔交易,如果是,则消息复杂度至少是O(N),于是当网络中加入节点的时候,输出一定是不会增加的 。而想要无限扩展,就一定有一些交易,是不需要广播到整个网络的 。
然后,剩下的所有可扩展算法,即我们定义中的第一种和第三种,其实最终都殊途同归,达到了一样的可扩展性,即O(N)消息复杂度 。然后,两者的输出最终都只会受到网络网速和响应延迟的约束,最终,比较优秀的算法大概在实验室环境下,达到这个量级,最终当然还是会取决于算法的优劣以及实现的优化程度,但是实验室环境模拟的大网络的延迟实际上是远好于实际的水平,所以在现实中,随着网络的扩大,输出不随着节点数量增加的提升而提升是个美好的想象——输出几乎一定会随着网络的增大而下降 。
这其中最容易混淆的就是DAG,但是这类算法中,我们之前也已经介绍过了,无论是工业界的IOTA,还是偏学术的和,无论在某些媒体或,文章,或者他们自己白皮书中是怎么介绍的,请记住,它们严格都是“可扩展”的共识算法,而不是“无限扩展”的 。