文章目录5. 用实现角点检测 6. 角点检测算法优缺点:二、SIFT(尺度不变特征变换) 3.特征点描述4.如何实现特征匹配?5.用检测兴趣点 6.用SIFT实现特征匹配三,匹配地理标记图像
一、角点检测算法 1.什么是角点
下面有两幅不同视角的图像,通过找出对应的角点进行匹配
我们可以直观的概括下角点所具有的特征:
轮廓之间的交点;
对于同一场景 , 即使视角发生变化,通常具备稳定性质的特征;
该点附近区域的像素点无论在梯度方向上还是其梯度幅值上有着较大变化;
【图像局部描述符【计算机视觉】】2. 角点检测算法基本思想是什么?
移动窗口W,位移为(u,v),比较移动前后的像素变化
文章插图
其中窗口函数可以是平坦的,也可以是高斯的如下图:
首先 , 将图像窗口平移[u,v]产生灰度变化的自相关函数如下:
经过一系列E(u,v)表达式的演化, E(u,v)表达式可以更新为:
其中矩阵M是2x2矩阵 , 可由图像的导数求得:
文章插图
3.角点响应函数R
其中k是常量,一般取值为0.04~0.06,这个参数仅仅是这个函数的一个系数,它的存在只是调节函数的形状而已 。
4. 用实现角点检测 (1)角点检测器的响应函数
角点检测器的响应函数会返回像素值为响应函数值的一幅图像 。
from PIL import Imagefrom numpy import *from pylab import *from scipy.ndimage import filtersdef compute_harris_response(im,sigma=3): #在灰度图像中计算每个像素的Harris的焦点响应函数# 计算导数imx = zeros(im.shape)# 高斯倒数filters.gaussian_filter(im,(sigma,sigma),(0,1),imx)imy = zeros(im.shape)filters.gaussian_filter(im,(sigma,sigma),(1,0),imy)#矩阵分量Wxx = filters.gaussian_filter(imx*imx,sigma)Wxy = filters.gaussian_filter(imx*imy,sigma)Wyy = filters.gaussian_filter(imy*imy,sigma)#特征值Wdet = Wxx*Wyy - Wxy**2Wtr = Wxx + Wyyreturn Wdet/Wtr
(2)返回角点函数
def get_harris_points(harrisim,min_dist=10,threshold=0.5):#挑选高于阈值corner_threshold = thresholdharrisim_t = (harrisim > corner_threshold) * 1#得到坐标coords = array(harrisim_t.nonzero()).T#响应值candidate_values = [harrisim[c[0],c[1]] for c in coords]#按照响应值排序index = argsort(candidate_values)[::-1]#将可行点的位置存放于数组allowed_locations = zeros(harrisim.shape)allowed_locations[min_dist:-min_dist,min_dist:-min_dist] = 1#选择最佳的角点filtered_coords = []for i in index:if allowed_locations[coords[i,0],coords[i,1]] == 1:filtered_coords.append(coords[i])allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),(coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0return filtered_coords
(3)可视化
def plot_harris_points(image,filtered_coords):#可视化figure(dpi = 1
- 如何治疗脚气脱皮 如何治疗脚气脱皮
- 局部秃头是什么原因导致的怎么治疗 局部秃头是什么原因导致的
- 分步骤简单描述创建新文件夹的方法 简述创建新文件夹的三种方式
- flash怎么改变图形填充类型 flash图像填充有几种形式?分别是什么?
- 粉蒸鹅肉的做法 粉蒸鹅肉的做法描述两百字
- iphone照片如何模糊 iphone怎样局部模糊照片
- vue项目局部滚动带动整个页面滚动
- 生成系列论文:基于diffusion的3d图像的生成:Novel View Sy
- 梅花的形状怎么描述
- 低质量图像超分算法 SwinIR: Image Restoration Usin