垃圾收集器与内存分配策略(24)


相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力 。与CMS的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存 。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集 。
不过,G1相对于CMS仍然不是占全方位、压倒性优势的,从它出现几年仍不能在所有应用场景中代替CMS就可以得知这个结论 。比起CMS,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用()还是程序运行时的额外执行负载()都要比CMS要高 。
就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单,只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的 。
按照笔者的实践经验,目前在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间,当然,以上这些也仅是经验之谈,不同应用需要量体裁衣地实际测试才能得出最合适的结论,随着的开发者对G1的不断优化,也会让对比结果继续向G1倾斜 。
内存分配策略
对象优先在Eden分配,大对象直接进入老年代
大多数情况下,对象在新生代Eden区中分配 。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC 。
大对象就是指需要大量连续内存空间的Java对象,最典型的大对象便是那种很长的字符串,或者元素数量很庞大的数组,虚拟机提供了-XX:ld参数,指定大于该设置值的对象直接在老年代分配,这样做的目的就是避免在Eden区及两个区之间来回复制,产生大量的内存复制操作 。
注意-XX:ld参数只对和两款新生代收集器有效,的其他新生代收集器,如 并不支持这个参数 。如果必须使用此参数进行调优,可考虑加CMS的收集器组合 。
虚拟机字节码执行引擎 栈帧的结构
Java虚拟机以方法作为最基本的执行单元,“栈帧”(Stack Frame)则是用于支持虚拟机进行方法调用和方法执行背后的数据结构,它也是虚拟机运行时数据区中的虚拟机栈(Stack)的栈元素 。栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回地址等信息 。每一个方法从调用开始至执行结束的过程,都对应着一个栈帧在虚拟机栈里面从入栈到出栈的过程 。
每一个栈帧都包括了局部变量表、操作数栈、动态连接、方法返回地址和一些额外的附加信息 。在编译Java程序源码的时候,栈帧中需要多大的局部变量表,需要多深的操作数栈就已经被分析计算出来,并且写入到方法表的Code属性之中 。换言之,一个栈帧需要分配多少内存,并不会受到程序运行期变量数据的影响,而仅仅取决于程序源码和具体的虚拟机实现的栈内存布局形式 。
一个线程中的方法调用链可能会很长,以Java程序的角度来看,同一时刻、同一条线程里面,在调用堆栈的所有方法都同时处于执行状态 。而对于执行引擎来讲,在活动线程中,只有位于栈顶的方法才是在运行的,只有位于栈顶的栈帧才是生效的,其被称为“当前栈帧”( Stack Frame),与这个栈帧所关联的方法被称为“当前方法”( ) 。执行引擎所运行的所有字节码指令都只针对当前栈帧进行操作,在概念模型上,典型的栈帧结构如图