什么是积分 什么是导数( 二 )


2、乘除法运算法则

什么是积分  什么是导数

文章插图
导数的乘、除法运算法则公式
【注】分母g(x)≠0.
为了便于记忆,我们可以把导数的四则运算法则简化为如下图所示的、比较简洁的四则运算公式 。
简化后的导数四则运算法则公式
【注】分母v≠0.
四、复合函数求导公式(“链式法则”)
求一个基本初等函数的导数,只要代入“基本初等函数的导数公式”即可 。对于基本初等函数之外的函数如“y=sin(2x)”的导数,则要用到复合函数求导法则(又称“链式法则”) 。其内容如下 。
(1)若一个函数y=f(g(x)),则它的导数与函数y=f(u),u=g(x)的导数间的关系如下图所示 。
复合函数导数公式
(2)根据“复合函数求导公式”可知,“y对x的导数,等于y对u的导数与u对x的导数的乘积” 。
【例】求y=sin(2x)的导数 。
解:y=sin(2x)可看成y=sinu与u=2x的复合函数 。
因为(sinu)'=cosu,(2x)'=2,
所以,[sin(2x)]'=(sinu)'×(2x)'
=cosu×2=2cosu=2cos(2x) 。
五、可导函数在一点处的导数值的物理意义和几何意义
(1)物理意义:可导函数在该点处的瞬时变化率 。
(2)几何意义:可导函数在该点处的切线斜率值 。
【注】一次函数“kx+b(k≠0)”的导数都等于斜率“k”,即(kx+b)'=k 。